Numerical Analysis Interpolation and Polynomial Approximation Sheet # 2

Solve for best fit with calculation of coefficient of determination the following problems:

Prob. #1

The values of $\sin x$ are given below for different values of x. Find the value of $\sin 42^\circ$.

x	40°	45°	50°	55°	60°
$y = \sin x$	0.64279	0.70711	0.76604	0.81915	0.86603

Prob. #2

From the following table estimate the number of students who obtained marks in the examination between 50 and 55.

Marks	35-45	45-55	55-65	65-75	75-85
No. of students	31	42	51	35	31

Prob. #3

Using Newton's forward interpolation formula find the value of sin 52° from the following data. Estimate the error.

X	40°	45°	50°	55°	60°
$y = \sin x$	0.64279	0.70711	0.76604	0.81915	0.86603

Prob. #4

Using Newton's divided difference interpolation, find y(10) given that

$$y(5) = 12, y(6) = 13, y(9) = 14, y(11) = 16.$$

Prob. #5

Find f(8) by Newton's divided difference formula, for the data

x	4	5	7	10	11	13
<i>f</i> (<i>x</i>)	48	100	294	900	1210	2028

(A.U Apr/May 2005)

Prob. #6

The Newton forward divided-difference formula is used to approximate f(0.3) given the following data.

x	0.0	0.2	0.4	0.6
f(x)	15.0	21.0	30.0	51.0

Faculty of Engineering Electrical Engineering Department Second Year

Numerical Analysis Interpolation and Polynomial Approximation Sheet # 2

Prob. #7

Use Stirling's interpolation formula to find $y_{3,25}$ from the following data:

X	2	2.5	3.0	3.5	4.0
y = f(x)	49225	48316	47236	45926	44306

Prob. #8

Using Newton's backward formula, find the polynomial of degree 3 passing through (3,6),

(4, 24), (5, 60) and (6, 120).

Prob. #9

Find y(35), by using the given table

x 20 30 40 50

y 512 439 346 243

Dr. Sherif Adham Mohamed

Oct. 10. 2017